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The inclusion of ferrocene and its derivative in metal–organic

porous material MOF-5 is achieved by vapor diffusion; single-

crystal X-ray diffraction studies using synchrotron radiation of

ferrocene-loaded MOF-5 reveal well-ordered guest molecules

packed into the pores.

Metal–organic porous materials (MOPMs) are three-dimensional

(3D) open frameworks with pores and channels self-assembled

from metal ions and organic building units.1 Since Hoskins and

Robson first reported the designed synthesis of 3D frameworks

from metal ions and molecular building blocks,2 remarkable

progress has been made in this field. With potential applications in

such areas as ion exchange,2 magnetism,3 catalysis,4 optoelec-

tronics,5 separation,6 gas storage7 and sensors,8 these materials

have been under intense investigation. In particular, the regular,

highly-ordered pore and/or channel structures of MOPMs offer a

unique opportunity to prepare ordered arrays of molecules and

clusters, which may find useful applications, such as in the

development of new magnetic or non-linear optical materials. As a

part of our efforts to synthesize well-defined metal nanoclusters

within the pores of MOPMs,9,10 we decided first to investigate the

inclusion of organometallic compounds that may serve as

precursors to metal nanoclusters in MOPMs. Although the

inclusion of non-trivial guest molecules such as C60,
11 dyes,11

Keggin anions12 and organometallic compounds10 in MOPMs

have been reported, the presence of the guest molecules was

usually confirmed by a color change, spectroscopic methods,

powder X-ray diffraction and elemental analysis. The structural

elucidation of non-trivial guests by single-crystal X-ray diffraction

after their inclusion in MOPMs is seldom reported,13 even though

such information may be useful for understanding the interactions

between guests and host frameworks, and ultimately control the

orientation of guests within the nanopores. Herein, we report the

vapor phase inclusion of ferrocene and its derivative in MOF-5, a

well-known MOPM made of Zn2+ and 1,4-benzenedicarboxylate

(bdc) with large cavities (15.1 s) and wide windows (7.5 s),14 and

its structural characterization by the single-crystal X-ray diffrac-

tion method using synchrotron radiation.

As-synthesized single crystals14b of MOF-5 were guest-

exchanged with CHCl3 and evacuated at room temperature for

3 h to remove the solvent. The guest-free, single-crystalline MOF-5

was then heated to 110 uC with ferrocene in a break-seal tube so

that the organometallic compound could diffuse into the pores of

the host framework without contaminating the surface of the

crystals.15 Care was taken to protect the MOF-5 from airborne

moisture, which deteriorates the structural integrity of MOF-5

when evacuated.

The successful inclusion of ferrocene into the MOF-5 crystals

was evident, since the colorless crystals turned yellow while

maintaining their transparency (see ESI{). Although the ferrocene-

loaded single-crystals appeared to be suitable for structure

determination, the diffraction data obtained using a conventional

laboratory diffractometer was too weak to be solved. Therefore, a

new set of the diffraction data was collected using high-flux

synchrotron X-ray radiation. A successful solution and subsequent

refinements of the structure revealed that there are, on average,

seven ferrocene molecules per formula unit of MOF-5

([Zn4(O)(bdc)3]). The composition of this ferrocene-containing

framework (Fc@MOF-5) was independently confirmed by

elemental analysis and 1H-NMR (see below).

As reported in the original paper,14a MOF-5 has two types of

pore, with different internal diameters (11.0 and 15.1 s), due to the

tilted phenyl linkers connecting adjacent [Zn4(O)(O2CR)3] nodes.

The smaller and larger pores in the crystal structure of Fc@MOF-

5 (Fig. 1)§ are found to contain six and eight ferrocene guests,

respectively, with a slight distortion of the framework. The six

ferrocene molecules in the smaller pores adopt an octahedral

arrangement and those in the larger pores are positioned near the

corners. As a consequence, the face-centered symmetry of the unit

cell of the apo-host (space group Fm-3m) is lifted, and the unit cell

of the ferrocene-loaded framework is best defined by the space

group Pa-3. The change in the unit cell parameter (from 25.832 (1)

to 25.507 (3) s) is accompanied by a 3.7% decrease in the unit cell

volume compared to the evacuated framework. A similar behavior

of framework distortion and shrinkage upon guest inclusion has

previously been noted in another MOPM.15 The observed packing

of ferrocene guests into the pores seems to be quite efficient,

leaving only 1.6% (258 s per unit cell) of the crystal volume

accessible to solvent molecules.16 In the smaller pores, six ferrocene

molecules, which are symmetry related to one another, exist near

the center of the pore windows, and no strong interaction with the

host framework is apparent (Fig. 2). The two cyclopentadienyl
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(Cp) rings of the guest molecules are almost eclipsed by each other,

and other geometrical parameters conform to known values.17 In

the larger pore, there are two crystallographically-independent

ferrocene guests, one of which is ordered, while the other is

conformationally-disordered, since the molecule lies on a crystal-

lographic three-fold axis.18 A total of eight ferrocene molecules

exist, and they are located near the corners of the pore. Extensive

p–p interactions exist among the guests, as well as between the

guest and the framework, as judged by the orientation of the

aromatic rings and the short intermolecular distances (Fig. 3).

X-Ray powder diffraction profiles of the as-synthesized MOF-5

and Fc@MOF-5 were compared with the simulated diffraction

pattern of guest-free MOF-5 (Fig. 4). After the inclusion, a

number of new peaks are observed due to the ferrocene guests,

while the peaks corresponding to the porous host remain

unchanged. These results confirm that metal–organic porous

materials can act as a new type of host (or container) for small

molecular species.

The inclusion of ferrocene was attempted in the solution phase

by immersing evacuated MOF-5 crystals into a ferrocene solution

in DMF. However, the inclusion of ferrocene molecules was not

evident by UV/vis spectroscopy, even though the color of the

crystals turned yellow, that may be due to competition with DMF.

Considering the competition with solvent molecules, sublimation

seems to be a better choice for the inclusion of organometallic

compounds with a reasonable vapor pressure.

We have also studied the inclusion of ferrocene aldehyde

(FcCHO) in MOF-5 because it carries a reactive functional group,

useful for organic transformations. Despite exhaustive attempts,

we failed to locate ferrocene aldehyde in the MOF-5 crystals by

single crystal X-ray diffraction, which turned dark red upon guest

inclusion.19 However, the presence of ferrocene aldehyde in the

pores of MOF-5 has been confirmed and quantified by elemental

analysis and 1H-NMR spectroscopy after digesting the guest-

loaded crystals in DCl/DMSO-d6 (see ESI{). We are currently

investigating organic reactions of the guest confined within the

nanopores of the MOPM.

In conclusion, we have successfully demonstrated the vapor

phase inclusion of ferrocene and its derivative into metal–organic

porous material MOF-5. Single-crystal X-ray diffraction studies

using synchrotron radiation revealed a well-ordered array of

ferrocene molecules in the pores of the host framework, which

appears to be stabilized by p–p interactions. This method is

applicable to the inclusion of other organometallic species in

MOPMs, as also recently demonstrated by others.10 Furthermore,

this result suggests that a highly-ordered array of guest molecules

can be prepared within MOPMs, which may show interesting

magnetic or non-linear optical properties. Considering the

Fig. 1 X-Ray crystal structure of ferrocene-loaded MOF-5. Eight and

six ferrocene guests are found in the larger and smaller pores, respectively.

Hydrogen atoms are omitted for clarity.

Fig. 2 A view of a ferrocene molecule placed near the center of a

window of the smaller pore.

Fig. 3 (a) The orientation of ferrocene guests (orange) in the larger

pore of MOF-5. (b) The p-stacked ferrocene molecules in the pore are

3.53 s apart.

Fig. 4 X-Ray powder diffraction patterns: (a) guest-free MOF-5

(simulated), (b) as-synthesized MOF-5 and (c) Fc@MOF-5.
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potential use of metallocenes as precursors for carbon-based

materials,20 it would be also interesting to see how these molecular

species behave inside the nanopores of metal–organic porous

materials under various conditions.
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